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This talk 

 A measurement problem: quantum state 

tomography 

 Solution using compressed sensing 

 

 New result: “universal” low-rank matrix recovery 

 Why it works: geometric intuition 

 Proof ideas 



Quantum state tomography 

 Want to characterize the state of a quantum system 

 Example: ions in a trap 

Blatt group, Univ. Innsbruck 
Wineland group, NIST-Boulder 



 n ions = n qubits 

 Current experiments: 8 to 14 qubits in a single trap 

 Future goal: 50-100 qubits, multiple interconnected traps 

 

 State of n qubits is described by a density matrix ρ 

 Dimension d x d, where d = 2n  

 Positive semidefinite matrix w/ trace 1 

 Challenges: large dimension, most matrix elements  

are small (~1/sqrt(d)) 

Quantum state tomography 



Quantum state tomography 

  

 

 

 

 

 

 For any Pauli matrix P, we can estimate the 

“expectation value” Tr(Pρ) 

 Prepare the quantum state ρ, measure P, observe ±1, 

repeat many times, average the results 



Quantum state tomography 

 Pauli matrices form an orthogonal basis for Cdxd  

 Simple tomography: 

 For all Pauli’s P, estimate expectation values Tr(Pρ) 

 Reconstruct ρ by linear inversion, or maximum 

likelihood 

 This is very slow! 

 O(d3) time – measure d2 Pauli matrices, ~d times 

 Takes hours, for an ion trap with 8-10 qubits 

 Some details omitted… 



 For many interesting quantum states, ρ is low-rank  

 Pure states => rank 1 

 Pure states w/ local noise => “effective” rank dε  

 

 O(rd) parameters, rather than d2 (where r = rank(ρ)) 

 Can we do tomography more efficiently? – Yes! 

 Using an incomplete set of O(rd) Pauli matrices? – Yes! 

 How to choose this set? – At random! 

 How to reconstruct ρ? – Convex optimization! 

Quantum state tomography via 

compressed sensing 

 (Gross, Liu, Flammia, Becker & Eisert, 2009; Gross, 2009)  



 For any matrix ρ (of dimension d and rank r): 

 Choose a random set Ω of O(rd log2d) Pauli matrices 

 Then with high probability (over Ω), one can uniquely 

reconstruct ρ: 

 Estimate b(P) ≈ Tr(Pρ) (for all P in Ω) 

 Solve a convex program:  

argminX Tr(X) s.t. X ≥ 0 and |Tr(PX)–b(P)| ≤ ε  

      (for all P in Ω) 

Quantum state tomography via 

compressed sensing 

 (Gross, Liu, Flammia, Becker & Eisert, 2009; Gross, 2009)  

Favors low-rank 

solutions 



Where did this idea come from? 

 Medical imaging (CAT scans) 

 Reconstruct an image from a (rather incomplete) 

subset of its Fourier components 

 Naive reconstruction produces lots of artifacts; 

regularize by minimizing the L1 norm 

 Works well when the true image F is piecewise 

constant, so its derivative F’ is sparse 

 Need O(k polylog n) Fourier components, when  

F’ has k spikes and dimension n 

 Fourier vectors are “incoherent” wrt sparse vectors:  

||f||∞ ≤ (1/√d) ||f||2  (Candes, Romberg & Tao, 2004) 



Where did this idea come from? 

 From sparse vectors to low-rank matrices 

 L1 norm => nuclear norm 

 Sum of singular values, aka, trace norm, Schatten 1-norm 

 (Recht, Fazel & Parrilo, 2007) 

 See also work on “matrix completion” 

 Reconstruct a low-rank matrix M from a subset of entries 

 Assume singular vectors of M are “incoherent” wrt std basis 

 (Candes & Recht, 2008; Candes & Tao, 2009) 

 Fourier vectors => Pauli matrices 

 Pauli matrices are “incoherent” wrt low-rank matrices:  

||P|| ≤ (1/√d) ||P||F  

 (Gross, Liu, Flammia, Becker & Eisert, 2009; Gross, 2009) 



New result: “universal”  

low-rank matrix recovery 

 For any matrix ρ (of dimension d and rank r): 

 Choose a random set Ω of O(rd log6d) Pauli matrices 

 Then with high probability (over Ω),… 

 One can uniquely reconstruct ρ: 

 Estimate the expectation values Tr(Pρ) (for all P in Ω) 

 Solve a convex program 

 

 Can fix the set Ω once and for all! 

 That Ω will work for every rank-r matrix ρ – it is “universal” 

 Actually, most choices of Ω will have this property! 

(Liu, 2011) 



Two different pictures of  

state space 

 Original results on matrix completion / 

compressed tomography 

 “Dual certificates” 

 Local properties of state space around a point ρ 

 

 New result – “universal” matrix recovery 

 “Restricted isometry property” (RIP) 

 Global properties: whole state space can be 

embedded (w/ small distortion) into Rm,  

m = O(rd polylog d) 



Some notation 

 Sampling operator: R(ρ) = [Tr(Pρ)]P in Ω  

 Returns a vector of Pauli expectation values 

 ρ = unknown state 

 Ω = subset of Pauli operators 

 In a real experiment, after measuring P in Ω, we get b ≈ R(ρ) 

 

 Solve: argminX Tr|X| s.t. ||R(X)–b||2 ≤ ε, X ≥ 0 



What happens around ρ 

Tr |X| ≤ 1 

(trace-norm ball) 

“spiky” => lots of  

exposed points 

R(X) = b 

(set of feasible solutions) 

“random” and “incoherent” => 

misaligned with the faces  

of the tr-norm ball 

Unique solution:  

X = ρ 

(low rank => exposed point  

of the tr-norm ball) 



What happens around ρ 

 Hyperplane {X : R(X) = b} is “misaligned” with 

the faces of the trace-norm ball 

 Any perturbation X = ρ+δ either changes the value of 

R(X), or increases the trace norm of X 

 “Dual certificate” 

 Key facts 

 Measurements are “incoherent”: ||P|| ≤ d–1/2 ||P||F  

 E.g., Pauli matrices, Gaussian random matrices 

 For each ρ, we choose a random hyperplane 

 It’s likely to be good 



A global picture 

 Sampling operator R(ρ) = [Tr(Pρ)]P in Ω , |Ω| ~ rd log6d 

 

 Restricted isometry property (RIP) (w/ rank r, error δ): 
for all X with dim. d and rank r, 
 
 (1–δ) ||X||2 ≤ ||R(X)||2 ≤ (1+δ) ||X||2  

 

 “Embedding the manifold of low-rank matrices  
into a low-dimensional linear space” 

 

 This implies universal low-rank matrix recovery 



A global picture 

 The manifold of pure states 

 A curved surface,  

w/ real dim. ~d 

 Naturally defined in  

Euclidean space  

w/ dim. d2  

 But can be embedded  

(w/ minor distortion)  

in a subspace  

w/ dim. O(d log6d) 



A global picture 

 Why is this embedding possible? 

 Measurements are “incoherent”: ||P|| ≤ d–1/2 ||P||2  

 E.g., Pauli matrices, Gaussian random matrices 

 For any low-rank state, the Pauli coefficients are 

fairly uniform (not peaked) 

 So it’s enough to sample a random subset of them 

 Hard part: showing that this is true “uniformly” over all 

low-rank states 

 Covering the trace-norm ball – “entropy argument” 



The rest of this talk 

 Why “universality” is useful 

 Error bounds: what happens when ρ is full-rank? 

 Sample complexity: how many copies of ρ are needed 

for tomography? 

 

 Proof ideas 

 Entropy argument 

 

 Some practical issues 



Error bounds for compressed 

tomography 

 Reconstructing a full-rank state ρ 

 Intuition: if we measure O(rd log6d) Pauli’s,  

we should be able to reconstruct the first r 

eigenvectors of ρ (call this ρr) 

 Theorem: we obtain an estimate σ such that  

||ρ – σ||2
2 ≤ (polylog d) ||ρ – ρr||2

2  

 

 Much stronger than error bounds using dual certificate 

 Combining RIP result (Liu, 2011) with error bound 

from (Candes and Plan, 2011) 

(Liu, 2011) 



 Compressed tomography uses fewer 
measurement settings m 

 

 But maybe we pay a price in higher sample 
complexity? 
 In practice, answer seems to be no! 

 Total sample complexity stays the same for all m in the 
range: rd polylog d ≤ m ≤ d2  

 RIP-based analysis confirms this (up to log factors)! 

 Convenient when it is easier to repeat a measurement 
than to change measurement settings 

 

Sample complexity 
(Flammia, Gross, Liu & Eisert, 2012) 



Sample complexity 
(Flammia, Gross, Liu & Eisert, 2012) 

(da Silva, Landon-Cardinal & Poulin, 2011; Flammia & Liu, 2011) 

 Using Pauli measurements: 

Compressed 

tomography 

(unknown state is 

approx. low-rank) 

Fidelity estimation 

(target state is pure) 

# of parameters to be 

learned 

O(rd) 1 

# of Pauli operators 

(“meas. settings”) 

O(rd polylog d) O(1) 

# of copies of 

unknown state 

(“sample complexity”) 

O(r2d2 polylog d) O(d) 



Proof ideas 

 Restricted isometry property (RIP) 

 

 RIP implies low-rank matrix recovery 

 (Recht, Fazel & Parrilo, 2007; Candes & Plan, 2010) 

 

 Pauli measurements obey RIP 

 (Liu, 2011) 



Operators that obey RIP 

 Proof ideas: 

 Previous work: RIP for Gaussian random matrices:  

use “union bound” over all rank-r matrices (Recht et al, 2007) 

 Our work: RIP for random Pauli matrices: 

use “entropy argument” – improve on union bound,  

by keeping track of correlations (Rudelson & Vershynin, 2006)  

 Prove bounds on covering numbers, using entropy duality 

(Guedon et al, 2008)  



 Let R be the random Pauli sampling operator 

 Proof ideas: 

 Random variables taking values in a Banach space 

 Consider self-adjoint linear operators M: Cdxd  Cdxd  

 Define the norm ||M||(r) = supX in U |Tr(X+M(X))| 

 U = { X in Cdxd s.t. ||X||2 ≤ 1, rank(X) ≤ r } 

 We want to show that ||R*R – 1||(r) < 2δ – δ2  

 Construct R by sampling Pauli matrices iid at random 

 R*R is a sum of iid random variables, E(R*R) = 1 

 Bound E(||R*R – 1||(r)), then use tail bound 

Pauli measurements obey RIP (1) 

(Liu, 2011) 



Pauli measurements obey RIP (2) 

 Dudley’s inequality: 

 Gaussian process: family of rv’s G(X) (for all X in U) 

 U = { X in Cdxd s.t. ||X||2 ≤ 1, rank(X) ≤ r } 

 

 E[ supX in U G(X) ] ≤ (const) · ∫ε≥0 log1/2 N(U,dG,ε) dε 

 

 dG is a metric: dG(X,Y) = ( E[ (G(X)–G(Y))2 ] )1/2  

(measures strength of correlation b/w G(X) and G(Y)) 

 N(U,dG,ε) is a covering number:  

# of balls of radius ε needed to cover U 

 Integrate over different scales 0 < ε < ∞ 

(Liu, 2011) 



Pauli measurements obey RIP (3) 

 Bounding the covering numbers N(U,dG,ε) 

 Let B1 be the trace-norm ball 

 Define a semi-norm on Cdxd, ||M||X = maxP in Ω |Tr(P+M)| 

 Problem reduces to bounding N(B1, ||·||X, ε) 

 

 Trivial bound:  

N(B1, ||·||X, ε) ≤ (polynomial in 1/ε, exponential in d2) 

 

 Clever bound:  

N(B1, ||·||X, ε) ≤ (exponential in 1/ε2, quasipolynomial in d) 

 

(Liu, 2011) 



Pauli measurements obey RIP (4) 

 Bounding N(B1, ||·||X, ε) via entropy duality 

 Rewrite it as:  

N[ S : (Cdxd, trace norm)  (Cm, L∞ norm) ] 

 

 This is related to the dual covering number:  

 N[ S* : (Cm, L1 norm)  (Cdxd, operator norm) ] 

 

 Which we can bound by known techniques… (B. Maurey) 

(Liu, 2011) 



Continuous-variable systems 
  (Ohliger, Nesme, Gross, Liu & Eisert, 2011) 

 Instead of an orthonormal operator basis,  

use a tight frame {wa} (w.r.t. a probability 

measure μ): 

 

∫ wa Tr(wa
+ρ) dμ(a) = ρ/d2, for all ρ 

 

 Incoherence condition: ||wa|| ≤ O(1/√d) 



 Example: states with up to n photons (in a single 

mode) 

 Let the wa be weighted displacement operators 

 Sample a from a Gaussian of width ~sqrt(n) 

 These form a tight frame 

 The wa are incoherent! 

 Truncating to low-energy subspace 

 Expectation values Tr(wa
+ρ) can be estimated using 

homodyne measurements 

 Fourier transform of the Wigner function 

 

 

Continuous-variable systems 
  (Ohliger, Nesme, Gross, Liu & Eisert, 2011) 



Some practical issues 

 Different estimators: 
 Trace min:  argminX Tr(X) s.t. X ≥ 0, ||R(X)–b||2 ≤ ε 

 

 Dantzig selector:  argminX Tr(X) s.t. X ≥ 0, ||R*(R(X)–b)|| ≤ ε 

 

 Lasso:  argminX ||R(X)–b||2
2 + λTr(X) s.t. X ≥ 0 

 

 Regularized MLE: argminX –log L(X|b) + λTr(X) s.t. X ≥ 0 

 

 Other kinds of measurements (besides expectation values)? 

? 



 How to solve the trace-minimization convex 

program? 

 Interior-point SDP solvers 

 Very accurate, fast enough for 6 qubits 

 First-order methods 

 Can handle very large instances, but less accurate? 

 Careful: objective function is not smooth! 

 E.g., singular-value thresholding, gradient descent on 

the Grassmannian 

Some practical issues 



Open questions 

 Different motivations for compressed sensing? 

 Fewer quantum measurements? 

 Less classical postprocessing? 

 

 Can we use these methods to do other things? 

 Higher-order tensors? 

 Machine learning: matrix completion, learning HMM’s 


